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This talk 

 A measurement problem: quantum state 

tomography 

 Solution using compressed sensing 

 

 New result: “universal” low-rank matrix recovery 

 Why it works: geometric intuition 

 Proof ideas 



Quantum state tomography 

 Want to characterize the state of a quantum system 

 Example: ions in a trap 

Blatt group, Univ. Innsbruck 
Wineland group, NIST-Boulder 



 n ions = n qubits 

 Current experiments: 8 to 14 qubits in a single trap 

 Future goal: 50-100 qubits, multiple interconnected traps 

 

 State of n qubits is described by a density matrix ρ 

 Dimension d x d, where d = 2n  

 Positive semidefinite matrix w/ trace 1 

 Challenges: large dimension, most matrix elements  

are small (~1/sqrt(d)) 

Quantum state tomography 



Quantum state tomography 

  

 

 

 

 

 

 For any Pauli matrix P, we can estimate the 

“expectation value” Tr(Pρ) 

 Prepare the quantum state ρ, measure P, observe ±1, 

repeat many times, average the results 



Quantum state tomography 

 Pauli matrices form an orthogonal basis for Cdxd  

 Simple tomography: 

 For all Pauli’s P, estimate expectation values Tr(Pρ) 

 Reconstruct ρ by linear inversion, or maximum 

likelihood 

 This is very slow! 

 O(d3) time – measure d2 Pauli matrices, ~d times 

 Takes hours, for an ion trap with 8-10 qubits 

 Some details omitted… 



 For many interesting quantum states, ρ is low-rank  

 Pure states => rank 1 

 Pure states w/ local noise => “effective” rank dε  

 

 O(rd) parameters, rather than d2 (where r = rank(ρ)) 

 Can we do tomography more efficiently? – Yes! 

 Using an incomplete set of O(rd) Pauli matrices? – Yes! 

 How to choose this set? – At random! 

 How to reconstruct ρ? – Convex optimization! 

Quantum state tomography via 

compressed sensing 

 (Gross, Liu, Flammia, Becker & Eisert, 2009; Gross, 2009)  



 For any matrix ρ (of dimension d and rank r): 

 Choose a random set Ω of O(rd log2d) Pauli matrices 

 Then with high probability (over Ω), one can uniquely 

reconstruct ρ: 

 Estimate b(P) ≈ Tr(Pρ) (for all P in Ω) 

 Solve a convex program:  

argminX Tr(X) s.t. X ≥ 0 and |Tr(PX)–b(P)| ≤ ε  

      (for all P in Ω) 

Quantum state tomography via 

compressed sensing 

 (Gross, Liu, Flammia, Becker & Eisert, 2009; Gross, 2009)  

Favors low-rank 

solutions 



Where did this idea come from? 

 Medical imaging (CAT scans) 

 Reconstruct an image from a (rather incomplete) 

subset of its Fourier components 

 Naive reconstruction produces lots of artifacts; 

regularize by minimizing the L1 norm 

 Works well when the true image F is piecewise 

constant, so its derivative F’ is sparse 

 Need O(k polylog n) Fourier components, when  

F’ has k spikes and dimension n 

 Fourier vectors are “incoherent” wrt sparse vectors:  

||f||∞ ≤ (1/√d) ||f||2  (Candes, Romberg & Tao, 2004) 



Where did this idea come from? 

 From sparse vectors to low-rank matrices 

 L1 norm => nuclear norm 

 Sum of singular values, aka, trace norm, Schatten 1-norm 

 (Recht, Fazel & Parrilo, 2007) 

 See also work on “matrix completion” 

 Reconstruct a low-rank matrix M from a subset of entries 

 Assume singular vectors of M are “incoherent” wrt std basis 

 (Candes & Recht, 2008; Candes & Tao, 2009) 

 Fourier vectors => Pauli matrices 

 Pauli matrices are “incoherent” wrt low-rank matrices:  

||P|| ≤ (1/√d) ||P||F  

 (Gross, Liu, Flammia, Becker & Eisert, 2009; Gross, 2009) 



New result: “universal”  

low-rank matrix recovery 

 For any matrix ρ (of dimension d and rank r): 

 Choose a random set Ω of O(rd log6d) Pauli matrices 

 Then with high probability (over Ω),… 

 One can uniquely reconstruct ρ: 

 Estimate the expectation values Tr(Pρ) (for all P in Ω) 

 Solve a convex program 

 

 Can fix the set Ω once and for all! 

 That Ω will work for every rank-r matrix ρ – it is “universal” 

 Actually, most choices of Ω will have this property! 

(Liu, 2011) 



Two different pictures of  

state space 

 Original results on matrix completion / 

compressed tomography 

 “Dual certificates” 

 Local properties of state space around a point ρ 

 

 New result – “universal” matrix recovery 

 “Restricted isometry property” (RIP) 

 Global properties: whole state space can be 

embedded (w/ small distortion) into Rm,  

m = O(rd polylog d) 



Some notation 

 Sampling operator: R(ρ) = [Tr(Pρ)]P in Ω  

 Returns a vector of Pauli expectation values 

 ρ = unknown state 

 Ω = subset of Pauli operators 

 In a real experiment, after measuring P in Ω, we get b ≈ R(ρ) 

 

 Solve: argminX Tr|X| s.t. ||R(X)–b||2 ≤ ε, X ≥ 0 



What happens around ρ 

Tr |X| ≤ 1 

(trace-norm ball) 

“spiky” => lots of  

exposed points 

R(X) = b 

(set of feasible solutions) 

“random” and “incoherent” => 

misaligned with the faces  

of the tr-norm ball 

Unique solution:  

X = ρ 

(low rank => exposed point  

of the tr-norm ball) 



What happens around ρ 

 Hyperplane {X : R(X) = b} is “misaligned” with 

the faces of the trace-norm ball 

 Any perturbation X = ρ+δ either changes the value of 

R(X), or increases the trace norm of X 

 “Dual certificate” 

 Key facts 

 Measurements are “incoherent”: ||P|| ≤ d–1/2 ||P||F  

 E.g., Pauli matrices, Gaussian random matrices 

 For each ρ, we choose a random hyperplane 

 It’s likely to be good 



A global picture 

 Sampling operator R(ρ) = [Tr(Pρ)]P in Ω , |Ω| ~ rd log6d 

 

 Restricted isometry property (RIP) (w/ rank r, error δ): 
for all X with dim. d and rank r, 
 
 (1–δ) ||X||2 ≤ ||R(X)||2 ≤ (1+δ) ||X||2  

 

 “Embedding the manifold of low-rank matrices  
into a low-dimensional linear space” 

 

 This implies universal low-rank matrix recovery 



A global picture 

 The manifold of pure states 

 A curved surface,  

w/ real dim. ~d 

 Naturally defined in  

Euclidean space  

w/ dim. d2  

 But can be embedded  

(w/ minor distortion)  

in a subspace  

w/ dim. O(d log6d) 



A global picture 

 Why is this embedding possible? 

 Measurements are “incoherent”: ||P|| ≤ d–1/2 ||P||2  

 E.g., Pauli matrices, Gaussian random matrices 

 For any low-rank state, the Pauli coefficients are 

fairly uniform (not peaked) 

 So it’s enough to sample a random subset of them 

 Hard part: showing that this is true “uniformly” over all 

low-rank states 

 Covering the trace-norm ball – “entropy argument” 



The rest of this talk 

 Why “universality” is useful 

 Error bounds: what happens when ρ is full-rank? 

 Sample complexity: how many copies of ρ are needed 

for tomography? 

 

 Proof ideas 

 Entropy argument 

 

 Some practical issues 



Error bounds for compressed 

tomography 

 Reconstructing a full-rank state ρ 

 Intuition: if we measure O(rd log6d) Pauli’s,  

we should be able to reconstruct the first r 

eigenvectors of ρ (call this ρr) 

 Theorem: we obtain an estimate σ such that  

||ρ – σ||2
2 ≤ (polylog d) ||ρ – ρr||2

2  

 

 Much stronger than error bounds using dual certificate 

 Combining RIP result (Liu, 2011) with error bound 

from (Candes and Plan, 2011) 

(Liu, 2011) 



 Compressed tomography uses fewer 
measurement settings m 

 

 But maybe we pay a price in higher sample 
complexity? 
 In practice, answer seems to be no! 

 Total sample complexity stays the same for all m in the 
range: rd polylog d ≤ m ≤ d2  

 RIP-based analysis confirms this (up to log factors)! 

 Convenient when it is easier to repeat a measurement 
than to change measurement settings 

 

Sample complexity 
(Flammia, Gross, Liu & Eisert, 2012) 



Sample complexity 
(Flammia, Gross, Liu & Eisert, 2012) 

(da Silva, Landon-Cardinal & Poulin, 2011; Flammia & Liu, 2011) 

 Using Pauli measurements: 

Compressed 

tomography 

(unknown state is 

approx. low-rank) 

Fidelity estimation 

(target state is pure) 

# of parameters to be 

learned 

O(rd) 1 

# of Pauli operators 

(“meas. settings”) 

O(rd polylog d) O(1) 

# of copies of 

unknown state 

(“sample complexity”) 

O(r2d2 polylog d) O(d) 



Proof ideas 

 Restricted isometry property (RIP) 

 

 RIP implies low-rank matrix recovery 

 (Recht, Fazel & Parrilo, 2007; Candes & Plan, 2010) 

 

 Pauli measurements obey RIP 

 (Liu, 2011) 



Operators that obey RIP 

 Proof ideas: 

 Previous work: RIP for Gaussian random matrices:  

use “union bound” over all rank-r matrices (Recht et al, 2007) 

 Our work: RIP for random Pauli matrices: 

use “entropy argument” – improve on union bound,  

by keeping track of correlations (Rudelson & Vershynin, 2006)  

 Prove bounds on covering numbers, using entropy duality 

(Guedon et al, 2008)  



 Let R be the random Pauli sampling operator 

 Proof ideas: 

 Random variables taking values in a Banach space 

 Consider self-adjoint linear operators M: Cdxd  Cdxd  

 Define the norm ||M||(r) = supX in U |Tr(X+M(X))| 

 U = { X in Cdxd s.t. ||X||2 ≤ 1, rank(X) ≤ r } 

 We want to show that ||R*R – 1||(r) < 2δ – δ2  

 Construct R by sampling Pauli matrices iid at random 

 R*R is a sum of iid random variables, E(R*R) = 1 

 Bound E(||R*R – 1||(r)), then use tail bound 

Pauli measurements obey RIP (1) 

(Liu, 2011) 



Pauli measurements obey RIP (2) 

 Dudley’s inequality: 

 Gaussian process: family of rv’s G(X) (for all X in U) 

 U = { X in Cdxd s.t. ||X||2 ≤ 1, rank(X) ≤ r } 

 

 E[ supX in U G(X) ] ≤ (const) · ∫ε≥0 log1/2 N(U,dG,ε) dε 

 

 dG is a metric: dG(X,Y) = ( E[ (G(X)–G(Y))2 ] )1/2  

(measures strength of correlation b/w G(X) and G(Y)) 

 N(U,dG,ε) is a covering number:  

# of balls of radius ε needed to cover U 

 Integrate over different scales 0 < ε < ∞ 

(Liu, 2011) 



Pauli measurements obey RIP (3) 

 Bounding the covering numbers N(U,dG,ε) 

 Let B1 be the trace-norm ball 

 Define a semi-norm on Cdxd, ||M||X = maxP in Ω |Tr(P+M)| 

 Problem reduces to bounding N(B1, ||·||X, ε) 

 

 Trivial bound:  

N(B1, ||·||X, ε) ≤ (polynomial in 1/ε, exponential in d2) 

 

 Clever bound:  

N(B1, ||·||X, ε) ≤ (exponential in 1/ε2, quasipolynomial in d) 

 

(Liu, 2011) 



Pauli measurements obey RIP (4) 

 Bounding N(B1, ||·||X, ε) via entropy duality 

 Rewrite it as:  

N[ S : (Cdxd, trace norm)  (Cm, L∞ norm) ] 

 

 This is related to the dual covering number:  

 N[ S* : (Cm, L1 norm)  (Cdxd, operator norm) ] 

 

 Which we can bound by known techniques… (B. Maurey) 

(Liu, 2011) 



Continuous-variable systems 
  (Ohliger, Nesme, Gross, Liu & Eisert, 2011) 

 Instead of an orthonormal operator basis,  

use a tight frame {wa} (w.r.t. a probability 

measure μ): 

 

∫ wa Tr(wa
+ρ) dμ(a) = ρ/d2, for all ρ 

 

 Incoherence condition: ||wa|| ≤ O(1/√d) 



 Example: states with up to n photons (in a single 

mode) 

 Let the wa be weighted displacement operators 

 Sample a from a Gaussian of width ~sqrt(n) 

 These form a tight frame 

 The wa are incoherent! 

 Truncating to low-energy subspace 

 Expectation values Tr(wa
+ρ) can be estimated using 

homodyne measurements 

 Fourier transform of the Wigner function 

 

 

Continuous-variable systems 
  (Ohliger, Nesme, Gross, Liu & Eisert, 2011) 



Some practical issues 

 Different estimators: 
 Trace min:  argminX Tr(X) s.t. X ≥ 0, ||R(X)–b||2 ≤ ε 

 

 Dantzig selector:  argminX Tr(X) s.t. X ≥ 0, ||R*(R(X)–b)|| ≤ ε 

 

 Lasso:  argminX ||R(X)–b||2
2 + λTr(X) s.t. X ≥ 0 

 

 Regularized MLE: argminX –log L(X|b) + λTr(X) s.t. X ≥ 0 

 

 Other kinds of measurements (besides expectation values)? 

? 



 How to solve the trace-minimization convex 

program? 

 Interior-point SDP solvers 

 Very accurate, fast enough for 6 qubits 

 First-order methods 

 Can handle very large instances, but less accurate? 

 Careful: objective function is not smooth! 

 E.g., singular-value thresholding, gradient descent on 

the Grassmannian 

Some practical issues 



Open questions 

 Different motivations for compressed sensing? 

 Fewer quantum measurements? 

 Less classical postprocessing? 

 

 Can we use these methods to do other things? 

 Higher-order tensors? 

 Machine learning: matrix completion, learning HMM’s 


